General Hydraulics

SAWEA Wrrkshop 2010 Innovative Water and Wastewate Networks

Presented by Greg Welch, AECOM

Presentation Outline

- Basic Hydraulic Principles
- Open channel flow
- Closed conduit / pressurized flow systems
- Orifices, weirs and flumes
- Pumps and pumping systems
- Water Hammer
- Computer Modeling

Basic Hydraulic Principles

Why Hydraulics?

- Select pipe sizes and fittings for piping systems
- Determine pumping and power requirements
- Choose materials which best suit application

Water - Basic Properties and Assumptions

- Weight and volume
- 1 m ${ }^{3}=1000 \mathrm{~kg}$
- sg = 1.00
- Viscosity
- Low viscosity
- Generally not considered
- Incompressible
- Water Flows Downhill
- Sewage = Water (hydraulically)

Continuity Equation

- $Q=V A$
where
Q = flow rate (m / s)
$\mathrm{V}=$ average velocity (m / s)
A = cross sectional area (m^{2})

Source: Haestad

Hydraulic Radius

- $R=A / P_{w}$
where
$\mathbf{R}=$ hydraulic radius (m)
$\mathrm{P}_{\mathrm{w}}=$ wetted perimeter (m)
A = cross sectional area (m^{2})

Energy

- Water has energy, namely
- Potential energy, due to pressure
- Potential energy, due to elevation
- Kinetic energy, due to velocity
- Energy typically expressed as head (H)
- morft
- 1 psi = 2.31 ft
- $1 \mathrm{kPa}=0.1 \mathrm{~m}$

Energy (Cont)

- Bernoulli's Equation
$H=V^{2} / 2 g+p / Y+z$

Where
H = Total energy (m)
V = Velocity (m / s)
$g=$ acceleration gravity ($9.81 \mathrm{~m} / \mathrm{s}^{2}$)
$p=$ pressure (kPa)
$\mathrm{Y}=$ water density $\left(9.81 \mathrm{kN} / \mathrm{m}^{3}\right)$
z = elevation (m)

Friction Loss

- Energy is lost in piping systems due to friction as water moves through the pipe
- Affected by:
- Pipe size
- Pipe length
- Pipe roughness
- Flow rate
- Losses also occur in other hydraulic elements:
- Fittings
- Valves
- Entrance/exits
- Etc.

Energy Equation

$V_{1}{ }^{2} / 2 g+p_{1} / Y+z_{1}=V_{2}^{2 / 2 g}+p_{2} / Y+Z_{2}+H_{L}$
$H_{L}=$ head loss
For Open Channel:

Energy Equation (cont)

 and for pressurized pipe systems:(b)

Open Channel Flow

Open Channel Flow

- Typical Design Equations:
- Manning's
- Chezy
- Manning's Equation:

$$
V=(1 / n) R^{2 / 3} S^{1 / 2}
$$

where $\quad \mathrm{V}=$ mean velocity (m / s)
$\mathrm{n}=$ Manning's roughness value
$\mathrm{R}=$ hydraulic radius (m)
$\mathrm{S}=$ friction slope (m / m)

Manning's Value

Typical Values:

Steel	0.010
Cast Iron	0.012
Concrete	0.013
Smooth Earth	0.018
Corrugated Metal Pipe	0.024
Rock	0.040

Pressurized Flow Systems

Pressure Pipe Flow

- Typical Design Equations:
- Hazen-Williams
- Darcy-Weisbach
- Hazen Williams Equation:

$$
S=\left(10.67 Q^{1.85}\right) /\left(C^{1.85} D^{4.87}\right)
$$

where $\quad S=$ head loss (m / m)
Q = Flow (m3/s)
C = Roughness Coefficient
D = pipe inside diameter (m)

Hazen Williams C Values

Typical Values:

PVC 150
Steel 140
Cast Iron 130
Concrete 120

Hardy Cross Analysis

- Used for analysis of pipe flow and pressure in water networks
- Flowrate in each pipe adjusted iteratively until all equations are balanced
- Basis of many water network analysis programs

Hardy Cross Analysis (Cont)

- The method is based on:
- Continuity Equation:
- Inflow = Outflow at nodes
- Example $\mathrm{Qa}=\mathrm{Qb}$ + Qc
- Energy Equation:
- Summation of Head
 Loss in Closed Loop is zero.
- Σ HLLoop =

$$
\Sigma(Q+Q) n=0
$$

Orifices, Weirs and Flumes

Orifices

- Energy $_{1}=$ Energy $_{2}$
- $\mathrm{V}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{p}_{1} / \mathrm{Y}+\mathrm{Z}_{1}=\mathrm{V}_{2}{ }^{2} / 2 \mathrm{~g}+\mathrm{p}_{2} / \mathrm{Y}+\mathrm{Z}_{2}+\mathrm{H}_{\mathrm{L}}$
- $\mathrm{Q}=\mathrm{CA}(2 \mathrm{gH})^{1 / 2}$
- where C = Orifice Coefficient

Weirs

Energy $_{1}=$ Energy $_{2}$

$\mathrm{V}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{p}_{1} / \mathrm{Y}+\mathrm{Z}_{1}=\mathrm{V}_{2} 2 / 2 \mathrm{~g}+\mathrm{p}_{2} / \mathrm{Y}+\mathrm{Z}_{2}+\mathrm{H}_{\mathrm{L}}$

Source: Haestad
Typical V-Notch Weir

Source: Haestad

	Weir Type	Figure	Equation	Coefficients
	Rectangular		Contracted $Q=C(L-0.1 i H) H^{3 / 2}$ Suppressed $\begin{aligned} & \mathrm{Q}=\mathrm{CLH} \\ & \mathrm{i}=\text { Number of iterations } \end{aligned}$	Metric $\mathrm{C}=1.84$ English $\mathrm{C}=3.367$
	V-Notch		$\mathrm{Q}=\mathrm{C}\left(\frac{8}{15}\right) \sqrt{2 g} \tan \theta\left(\frac{\mathrm{H}}{2}\right)^{3 / 2}$	C varies between 0.611 and 0.570 depending on H and Q^{*}
	Cipolletti		Metric $\mathrm{Q}=\mathrm{CLH}^{3 / 2}$ English $Q^{=\mathrm{CHH} M}$	Metric $C=1.86$ English $C=3.367$
	Broad (Side View)		$\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \mathrm{LH}^{3 / 2}$	C_{6} is a function of H_{v}, h_{t} and $L_{\text {, }}$ ranging between 1.25 and 3.1^{*}

Flumes

- Open channel flow measurement
- Flow uniquely related to water depth
- Types:
- Venturi
- Parshall
- Palmer -Bowlus
- Trapezoidal
- Custom flumes

Parshall Flume

Pumps and Pumping Systems

Pump Basics

- Head
- Resistance of the system
- Two types: static and friction
- Static head

- Difference in height between source and destination
- Independent of flow

Flow

Pump Head

- Static head consists of
- Static suction head (hS): lifting liquid relative to pump center line
- Static discharge head (hD) vertical distance between centerline and liquid surface in destination tank
- Friction head
- Resistance to flow in pipe and fittings
- Proportional to square of flow rate
- Depends on size, pipes, pipe fittings, flow rate, nature of Iiquid
- Closed loop system only has friction head (no static head)

Pumping System Characteristics

- In most cases:
- Total head = Static head + friction head

Pump Performance Curve

- Relationship between head and flow
- Flow increase
- System resistance increases
- Head increases
- Flow decreases to zero
- Zero flow rate: risk of pump burnout

Performance curve for centrifugal pump

Pump Operating Point

- Duty point: rate of flow at certain head
- Pump operating point: intersection of pump curve and system curve

Pump Suction Performance (NPSH)

- Cavitation or vaporization: bubbles inside pump
- If vapor bubbles collapse
- Erosion of vane surfaces
- Increased noise and vibration
- Choking of impeller passages
- Net Positive Suction Head
- NPSH Available: how much pump suction exceeds liquid vapor pressure
- NPSH Required: pump suction needed to avoid cavitation

Hydraulic Surge and Transients

- Commonly known as Water Hammer or Surge
- Causes
- Pump start-up or shut down
- Power failure
- Sudden valve closure
- Impacts on system
- Reduces life of pipelines
- Noise
- Mechanical damage
- Catastrophic system failure

Basic Equation

$\Delta P=r c \Delta v / g$

where $\quad r=$ fluid density
c = wave speed
v = change in velocity of fluid
$\mathrm{g}=$ gravitational constant

- c is influenced by pipe material
- P directly proportional to $\boldsymbol{\Delta v}$

Example - Sudden Valve Closure

- Results in surge wave propagating and reflecting in system

[^0]
Example - Sudden Pump Failure

- H fluctuates at any given point after pump failure
- Can cause column separation

Surge Mitigation

- At pump
- Pump control valves
- Surge anticipator valves
- Surge tanks
- Pump flywheels
- In Pipeline
- Vacuum breaker valves
- Air release valves
- Combo vacuum/air release valves
- Select "elastic" pipe materials (ie, PVC)
- Hydraulic modeling always recommended during design of new sewage force mains and water transmission mains.

Computer Modeling

Computer Modeling

- Why computer model?
- Reduces time
- More accurate
- Allows integration with other software (SCADA, GIS)
- Currently there is considerable software for modeling available
- Water distribution networks
- Sanitary sewer networks
- Storm Sewer Networks
- Surge/transient analysis
- WWTP Hydraulics
- Water Quality
- Some considerations
- For the modeler, understanding of hydraulics just as important as understanding software
- Garbage in = garbage out
- Calibration is essential

Advances in Water Distribution System Modeling

- Developing databases of system assets from multiple, complex sources
- Complex demand management
- Operations management with extended period modeling
- Maintaining disinfectant residual levels while minimizing disinfection by-product formation
- Understanding flow patterns and fate of water quality in storage facilities
- Assessing hydraulic transients in networks

Data Combined from Multiple, Complex Sources into Models

- Data Sources
- Geographic information systems
- CAD Drawings
- Paper maps - Scanned and digitized
- Demands - Billing databases, operating logs, production records
- SCADA
- Data Management
- GIS spatial tools
- Model software tools
- Custom programming

Metropolitan District Commission

Hartford, CT

- Population Served:
- 400,000
- Pipe Segments in Model:
- 4, 700 ($91,000+$ in GIS)
- Length of Pipes:
- 600 miles in model
- (1550 miles total)
- Water Sources:
- Surface Water
- Average Day Demand:
- 55.5 mgd
- Type of Model:
- EPS
- Software:
- H2OMap

(MDC)

Example

Managing several different demand patterns and multipliers

Cleveland (OH) Division of Water

- Population Served:
= 1.5 million
- Pipe Segments in Model:
- 57,000
- Length of Pipes:
- 5,350 miles
- Water Sources:
- Lake Erie (4 WTPs)
- Average Day Demand:
- 265 mgd
- Type of Model:
- EPS and WQ
- Software:

- $\mathrm{H}_{2} \mathrm{ON}$ et and SURGE

Main Uses of CWD's Hydraulic Model

- Assess System Flows and Pressures
- Evaluate Impact of System Growth
- Facilitate Maintenance Activities
- Manage Operations more Efficiently
- Monitor Water Quality

Field Sampling Used to Develop Water Quality Model

- Coordinated Sampling Program Conducted by CWD
- Three Sessions
- Approx. 25 Collection Sites/Session
- 2-6 Samples/Site Taken Over 48 Hours
- Hydraulic Model Modified to Simulate Chlorine Decay
- Samples Used for Calibration

CFD Modeling Provides Insight on Water Quality and Flow Patterns

- Assess Flow Patterns
- Design Baffles
- Assess

Thermal
Stratification

Tank Without Baffles

Tank With Baffles

Surge Models Created from Large System Models

Base Model

Skeleton Model

with Water Hammer Models

- Model Statistics
- Pipes $=3,709$ pipes ($6 "-48^{\prime \prime}$ Dia.)
- Nodes = 3,568 (198 Junctions \& 3,370 Consumption)
- Pumps = 3
- Tanks = 3 Simple Surge Tanks
- Reservoirs $=7$ Fixed Head Sources
- Valves $=3$ check/control valves, 1 surge relief valve
- Air Valves not included as conservative measure
- Base Demand $\sim 72 \mathrm{mgd}$ (Maximum day)

Keeping Distribution Systems in Top Working
Order with Limited Funds

- Flushing Programs
- Optimize Energy
- Unifying maintenance activities with databases
- Planning for pipe replacement
- Condition assessments
- Remaining useful life analyses

Automated Tools Used to Develop Flushing

Programs

- MWH Soft \& Bentley Systems
- MWH Soft
- UDF - separate module
- Requires InfoWater (ArcGIS) license
- Bentley
- Includes UDF with all platforms (stand alone, CAD, ArcGIS)

Energy Use Optimized for Durham Region Water System

Demand Forecaster
The Demand Forecaster predicts the hourly consurpotion demand in the Pickering/Ajax regions and in the Whitby/Oshawa/Coutice regions. A diumal pattern is created by a series of calculations that considers the forecasted weather and past daily demands that have

Boundary Conditions

The Boundary Conditions calculate the initial tank levels that have been retrieved from the SCADA system.

CADA System

Scheduler nfo Water soft ware that finds in the InfoWater software that fincs the least cost purpp schechule. Tark level and node pressure corstraints can be putted to ersure maintained quality
The program uses the genetic algorithm to find the optimal solution

Energy Rate

The energy rate is retrieved from the ieso website.

Optimized Pump Schedule

Work Planning Integration

- Provide the tools needed to support risk-based planning and decision making for water distribution assets
- Streamline the collection, management, and use of water system data in risk assessment and work prioritization

Thank You

A=СОМ

[^0]: Source: Haestad

