## **General Hydraulics**



SAWEA Workshop 2010 Innovative Water and Wastewater Networks Presented by Greg Welch, AECOM



## **Presentation Outline**

- Basic Hydraulic Principles
- Open channel flow
- Closed conduit / pressurized flow systems
- Orifices, weirs and flumes
- Pumps and pumping systems
- Water Hammer
- Computer Modeling

## **Basic Hydraulic Principles**

## Why Hydraulics?

- Select pipe sizes and fittings for piping systems
- Determine pumping and power requirements
- Choose materials which best suit application

# Water – Basic Properties and Assumptions

#### Weight and volume

- 1 m<sup>3</sup> = 1000 kg
- sg = 1.00

#### Viscosity

- Low viscosity
- Generally not considered
- Incompressible
- Water Flows Downhill
- Sewage = Water (hydraulically)

## **Continuity Equation**

#### Q = VA

#### where Q = flow rate (m/s) V = average velocity (m/s) A = cross sectional area (m<sup>2</sup>)



Source: Haestad

## Hydraulic Radius

#### $- \mathbf{R} = \mathbf{A} / \mathbf{P}_{w}$

where R = hydraulic radius (m) P<sub>w</sub> = wetted perimeter (m) A = cross sectional area (m<sup>2</sup>)



Source: Haestad

## Energy

#### Water has energy, namely

- Potential energy, due to pressure
- Potential energy, due to elevation
- Kinetic energy, due to velocity

#### Energy typically expressed as head (H)

- m or ft
- 1 psi = 2.31 ft
- 1 kPa = 0.1 m



## Energy (Cont)

Bernoulli's Equation

#### $H = V^2/2g + p/\gamma + z$

Where H = Total energy (m) V = Velocity (m/s) g = acceleration gravity (9.81 m/s<sup>2</sup>)

p = pressure (kPa)
γ = water density (9.81 kN/m<sup>3</sup>)
z = elevation (m)

### **Friction Loss**

- Energy is lost in piping systems due to friction as water moves through the pipe
- Affected by:
  - Pipe size
  - Pipe length
  - Pipe roughness
  - Flow rate
- Losses also occur in other hydraulic elements:
  - Fittings
  - Valves
  - Entrance/exits
  - Etc.

## **Energy Equation**

#### $V_1^2/2g + p_1/\gamma + z_1 = V_2^2/2g + p_2/\gamma + z_2 + H_L$ H<sub>L</sub> = head loss For Open Channel:



## **Energy Equation (cont)**

and for pressurized pipe systems:



## **Open Channel Flow**

## **Open Channel Flow**

#### Typical Design Equations:

- Manning's
- Chezy
- Manning's Equation:
   V = (1/n) R<sup>2/3</sup> S<sup>1/2</sup>
  - where V = mean velocity (m/s)
    - n = Manning's roughness value
    - R = hydraulic radius (m)
    - S = friction slope (m/m)

## Manning's Value

#### **Typical Values:**

| Steel                 | 0.010 |
|-----------------------|-------|
| Cast Iron             | 0.012 |
| Concrete              | 0.013 |
| Smooth Earth          | 0.018 |
| Corrugated Metal Pipe | 0.024 |
| Rock                  | 0.040 |

## **Pressurized Flow Systems**

#### **Pressure Pipe Flow**

#### Typical Design Equations:

- Hazen-Williams
- Darcy-Weisbach
- Hazen Williams Equation: S = (10.67Q<sup>1.85</sup>)/(C<sup>1.85</sup>D<sup>4.87</sup>)
  - where S = head loss (m/m)
    - Q = Flow (m3/s)
    - C = Roughness Coefficient
    - D = pipe inside diameter (m)

## Hazen Williams C Values

#### **Typical Values:**

| PVC       | 150 |
|-----------|-----|
| Steel     | 140 |
| Cast Iron | 130 |
| Concrete  | 120 |

## Hardy Cross Analysis

- Used for analysis of pipe flow and pressure in water networks
- Flowrate in each pipe adjusted iteratively until all equations are balanced
- Basis of many water network analysis programs

## Hardy Cross Analysis (Cont)

#### The method is based on:

- Continuity Equation:
  - Inflow = Outflow at nodes
  - Example Qa = Qb + Qc
- Energy Equation:
  - Summation of Head Loss in Closed Loop is zero.
  - ΣHLLoop = Σ(Q+Q)n = 0



## **Orifices**, Weirs and Flumes

## Orifices

- Energy<sub>1</sub> = Energy<sub>2</sub>
- $V_1^2/2g + p_1/\gamma + z_1 = V_2^2/2g + p_2/\gamma + z_2 + H_L$
- Q = CA (2gH)<sup>1/2</sup>
- where C = Orifice Coefficient



## Weirs

#### Energy<sub>1</sub> = Energy<sub>2</sub> $V_1^2/2g + p_1/\gamma + z_1 = V_2^2/2g + p_2/\gamma + z_2 + H_L$



#### Source: Haestad Typical V-Notch Weir





#### Source: Haestad

|               |                           | Weir Type            | Figure                                                                                                                                                                                                                                      | Equation                                                                                          | Coefficients                                                            |
|---------------|---------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Sharp Crested | d                         | Rectangular          |                                                                                                                                                                                                                                             | Contracted<br>$Q = C(L-0.1iH) H^{M2}$<br>Suppressed<br>$Q = CLH^{M2}$<br>i = Number of iterations | Metric<br>C = 1.84<br>English<br>C = 3.367                              |
|               | Sharp Creste              | V-Notch              | <del>P</del> H                                                                                                                                                                                                                              | $Q = C \left(\frac{8}{15}\right) \sqrt{2g} \tan \theta \left(\frac{H}{2}\right)^{s/2}$            | C varies between<br>0,611 and 0,570<br>depending on<br>H and Q*         |
|               |                           | Cipo <b>ll</b> etti  | L<br>4:1<br>4:1                                                                                                                                                                                                                             | Metric<br>Q = CLH <sup>32</sup><br>English<br>Q <sup>= CLH M2</sup>                               | Metric<br>C = 1.86<br>English<br>C = 3.367                              |
|               | Non-<br>Sharp-<br>Crested | Broad<br>(Side View) | $\begin{array}{c c} \downarrow & \checkmark & \downarrow \\ \hline H_r & & h_t \\ \hline \uparrow & \downarrow \\ \hline \downarrow & \downarrow \\ \hline \downarrow & \downarrow \\ \hline \downarrow & \downarrow \\ \hline \end{array}$ | $Q = C_d L H_r^{-3/2}$                                                                            | C₄ is a function<br>of H, h, and L,<br>ranging between<br>1.25 and 3.1* |

## Flumes

- Open channel flow measurement
- Flow uniquely related to water depth
- Types:
  - Venturi
  - Parshall
  - Palmer Bowlus
  - Trapezoidal
  - Custom flumes

Parshall Flume



## **Pumps and Pumping Systems**

## **Pump Basics**

#### • Head

- Resistance of the system
- Two types: static and friction

#### Static head

- Difference in height between source and destination
- Independent of flow



#### Pump Head

#### Static head consists of

 Static suction head (hS): lifting liquid relative to pump center line

Friction head

Flow

Static discharge head (hD) vertical distance between centerline and liquid surface in destination tank

#### Friction head

- Resistance to flow in pipe and fittings
- Proportional to square of flow rate
- Depends on size, pipes, pipe fittings, flow rate, nature of liquid
- Closed loop system only has friction head (no static head)

#### **Pumping System Characteristics**

# In most cases: Total head = Static head + friction head



## Pump Performance Curve

- Relationship between head and flow
  - Flow increase
  - System resistance increases
  - Head increases
  - Flow decreases to zero
- Zero flow rate: risk of pump burnout



## Pump Operating Point

- Duty point: rate of flow at certain head
- Pump operating point: intersection of pump curve and system curve



## **Pump Suction Performance (NPSH)**

- Cavitation or vaporization: bubbles inside pump
- If vapor bubbles collapse
  - Erosion of vane surfaces
  - Increased noise and vibration
  - Choking of impeller passages
- Net Positive Suction Head
  - NPSH Available: how much pump suction exceeds liquid vapor pressure
  - NPSH Required: pump suction needed to avoid cavitation

## Hydraulic Surge and Transients

 Commonly known as Water Hammer or Surge

#### Causes

- Pump start-up or shut down
- Power failure
- Sudden valve closure

#### Impacts on system

- Reduces life of pipelines
- Noise
- Mechanical damage
- Catastrophic system failure

### **Basic Equation**

#### $\Delta P = rc\Delta v/g$

- where r = fluid density c = wave speed v = change in velocity of fluid g = gravitational constant c is influenced by pipe material
- P directly proportional to Δv

## Example – Sudden Valve Closure

 Results in surge wave propagating and reflecting in system



Source: Haestad

## Example – Sudden Pump Failure

- H fluctuates at any given point after pump failure
- Can cause column separation



Source: Haestad

## **Surge Mitigation**

#### At pump

- Pump control valves
- Surge anticipator valves
- Surge tanks
- Pump flywheels
- In Pipeline
  - Vacuum breaker valves
  - Air release valves
  - Combo vacuum/air release valves
  - Select "elastic" pipe materials (ie, PVC)
- Hydraulic modeling always recommended during design of new sewage force mains and water transmission mains.

## **Computer Modeling**

## **Computer Modeling**

#### Why computer model?

- Reduces time
- More accurate
- Allows integration with other software (SCADA, GIS)
- Currently there is considerable software for modeling available
  - Water distribution networks
  - Sanitary sewer networks
  - Storm Sewer Networks
  - Surge/transient analysis
  - WWTP Hydraulics
  - Water Quality

#### Some considerations

- For the modeler, understanding of hydraulics just as important as understanding software
- Garbage in = garbage out
- Calibration is essential

#### Advances in Water Distribution System Modeling

- Developing databases of system assets from multiple, complex sources
- Complex demand management
- Operations management with extended period modeling
- Maintaining disinfectant residual levels while minimizing disinfection by-product formation
- Understanding flow patterns and fate of water quality in storage facilities
- Assessing hydraulic transients in networks

#### Data Combined from Multiple, Complex Sources into Models

#### Data Sources

- Geographic information systems
- CAD Drawings
- Paper maps Scanned and digitized
- Demands Billing databases, operating logs, production records
- SCADA
- Data Management
  - GIS spatial tools
  - Model software tools
  - Custom programming

#### Metropolitan District Commission Hartford, CT

- Population Served:
  - 400,000
- Pipe Segments in Model:
  - 4, 700 (91,000+ in GIS)
- Length of Pipes:
  - 600 miles in model
  - (1550 miles total)
- Water Sources:
  - Surface Water
- Average Day Demand:
  - 55.5 mgd
- Type of Model:
  - EPS
- Software:
  - H2OMap





## Cleveland (OH) Division of Water

- Population Served:
  - 1.5 million
- Pipe Segments in Model:
  - 57,000
- Length of Pipes:
  - 5,350 miles
- Water Sources:
  - Lake Erie (4 WTPs)
- Average Day Demand:
  - 265 mgd
- Type of Model:
  - EPS and WQ
- Software:
  - H2ONet and SURGE



#### Main Uses of CWD's Hydraulic Model

- Assess System Flows and Pressures
- Evaluate Impact of System Growth
- Facilitate Maintenance Activities
- Manage Operations more Efficiently
- Monitor Water Quality



#### Field Sampling Used to Develop Water Quality Model



- Coordinated Sampling Program Conducted by CWD
  - Three Sessions
  - Approx. 25 Collection Sites/Session
  - 2-6 Samples/Site Taken Over 48 Hours
- Hydraulic Model Modified to Simulate Chlorine Decay
- Samples Used for Calibration



## CFD Modeling Provides Insight on Water Quality and Flow Patterns

- Assess Flow Patterns
- Design Baffles

 Assess Thermal Stratification







#### **Base Model**

#### **Skeleton Model**

Impact of System Upgrades Assessed with Water Hammer Models

#### Model Statistics

- Pipes = 3,709 pipes (6" 48" Dia.)
- Nodes = 3,568 (198 Junctions & 3,370 Consumption)
- Pumps = 3
- Tanks = 3 Simple Surge Tanks
- Reservoirs = 7 Fixed Head Sources
- Valves = 3 check/control valves, 1 surge relief valve
- Air Valves not included as conservative measure
- Base Demand ~ 72 mgd (Maximum day)

#### Keeping Distribution Systems in Top Working Order with Limited Funds

- Flushing Programs
- Optimize Energy
- Unifying maintenance activities with databases
- Planning for pipe replacement
  - Condition assessments
  - Remaining useful life analyses

#### Automated Tools Used to Develop Flushing

#### Programs

- MWH Soft & Bentley Systems
- MWH Soft
  - UDF separate module
  - Requires InfoWater (ArcGIS) license
- Bentley
  - Includes UDF with all platforms (stand alone, CAD, ArcGIS)





## Energy Use Optimized for Durham Region Water System



## Work Planning Integration

- Provide the tools needed to support risk-based planning and decision making for water distribution assets
- Streamline the collection, management, and use of water system data in risk assessment and work prioritization



